Database System Concepts

Chapter 2: Intro to Relational Model
18-Aug-22

Outline

Structure of Relational Databases
Database Schema

Keys

Schema Diagrams

Relational Query Languages

Outline

e Structure of Relational Databases

Relational Model

Use a collection of tables to represent both
data and relationships among those data

Terminology (basic notions of the relational

model)

— relation/table

— tuple/row

— attributes/column

Example of a Relation

attributes
‘ (or columns)

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000 tuples
15151 | Mozart | Music 40000 (or rows)
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000

98345 | Kim Elec. Eng. 80000

Attribute Types

The set of allowed values for each attribute is
called the domain of the attribute

Attribute values are (normally) required to be
atomic; that is, indivisible

The special value null is a member of every
domain. Indicated that the value is “unknown”

The null value causes complications in the
definition of many operations

Outline

e Database Schema

Relation Schema and Instance

* Database Schema

— Logical design of the database

— Like type definition in programming-language
* Database Instance

— Snapshot of the data
— Like variable in programming-language

Relation Schema and Instance

Attributes: A, A,, ..., A,
Relation schema: R = (A, A,, ..., A,)
Example:

instructor = (ID, name, dept_name, salary)

Formally, given sets D, D,, D, a relation ris

— asubsetof D, x D, x..xD,

— a set of n-tuples (a,, a,, ..., a,) where each a; € D,

— the current values (relation instance) of a relation are
specified by a table

— an element t of ris a tuple, represented by a row in a table

Relations are Unordered

* Order of tuples is irrelevant
— tuples may be stored in an arbitrary order
— example: instructor relation with unordered tuples

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 30000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

* Keys

Outline

Keys

* How to distinguish the tuples in a given
relation?

— the value of the attribute values of a tuple should
be able to uniquely identify the tuple

* Terminology
— Superkey
— Candidate Key
— Primary Key
— Foreign Key

Keys

xE (25, BES, k5R)

Let K R

K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R)

— Example: {ID} and {ID,name} are both superkeys of instructor.

Superkey K is a candidate key if K is minimal

— Example: {ID}is a candidate key for Instructor

One of the candidate keys is selected to be the primary key.
— which one? Primary Key Constraint

Foreign key constraint: Value in one relation must appear in
another

— Referencing relation
— Referenced relation

— Example — dept_name in instructor is a foreign key from instructor
referencing department

Referential Integrity Constraint

Foreignh Key

O RIRFEXZEr#ls: r(4,B,0),s(B,D), MEXFRr LRIEMB
RESRESHIIME, rEFRAIMBUGRRVSIRRER, sIMSMT
WERRRE

m f FEES BRSNS FR) - SR

B (E=E, TR FR) - WEFZXK (BHAF)
HpBETWS FRARERFERIING

iRtz (RIZES RER, 590, TEIRE)

B Instructor (ID, name, Wme, salary) - Z2HEXZR
Department (dept_name, building, budget) - # 2 H8KZ

SHRXRRIMBRIER SRS IR X R PR FEK Anull

14

Outline

 Schema Diagrams

15

Schema Diagram for University Database

0 classroom (building, room_number, capacity)

O department (dept_name, building, budget)

0 course (course _id, title, dept_name, credits)

O instructor (1D, name, dept_name, salary)

[section (course_id, sec_id, semester, year, building, room_number,
time_slot_id)

0 teaches (1D, course_id, sec_id, semester, year)

O student (ID, name, dept_name, tot_cred)
[takes (ID, course id, sec_id, semester, year, grade)
O advisor (s_ID, i_ID)

O time_slot (time_slot_id, day, start_time, end_time)

O prereqg (course _id, prereq_id)

Schema Diagram for University Database

| A A 4 “ h 4

advisor

s id
i_id

AL

i n
takes student
D » ID -
- . name
course id dept_name
sec_id -
_— tot cred
semester
vear
grade
section course
course_id course_id department
sec_id M >
semester e dept_uame
Sermesiel dept_name ™ puil ding
year - credits
building time_slot budget
room_number time slot id
time_slot_id | day
start_time
end_time
prereq instructor
classroom L course id 0
building prereq id name
room_number dept_name
capacity teaches salary
D
L_{ course_id
sec_id
semester
vear _

Outline

* Relational Query Languages

18

Relational Query Language

* Query Languages

— allow manipulation (¥22\) and retrieval (f&3R) of
data from a database

e Relational Query Languages

— qguery languages for Relational Database
— “real”/ “practical” query languages
* e.g. SQL

— “pure”/ “mathematical” query languages
» Relational Algebra
* Relational Calculus

19

Query Languages Are specialized languages
(e.g. SQL) for asking questions.

Relational Algebra and Calculus

Algebra Calculus

20

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Y Relational Algebra: More operational (3F&1{t),
very useful for representing execution plans.

" Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative ([&iA&).)

Understanding Relational Algebra & Calculus is key to
understanding SQL, query processing!

Declarative vs Procedural

* Procedural programming requires that the
programmer tell the computer what to do.

— how to get the output for the range of required
Inputs

— the programmer must know an appropriate
algorithm.
* Declarative programming requires a more
descriptive style.

— the programmer must know what relationships
hold between various entities.

Why do we need Query Languages anyway?

 Two key advantages
— Less work for user asking query
— More opportunities for optimization

e Relational Algebra
— Theoretical foundation for SQL
— Higher level than programming language
* but still must specify steps to get desired result
e Relational Calculus
— Formal foundation for Query-by-Example

— A first-order logic description of desired result
— Only specify desired result, not how to get it

Relational Query Languages

* Procedural vs .non-procedural, or declarative
* “Pure” languages:

— Relational algebra

— Tuple relational calculus

— Domain relational calculus

* The above 3 pure languages are equivalent in
computing power

* We will concentrate in this chapter on
relational algebra

— Not turning-machine equivalent
— consists of 6 basic operations

Thank youl!
Q&A

