
Database System Concepts

Chapter 2: Intro to Relational Model
18-Aug-22

Outline

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

Outline

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

Relational Model

• Use a collection of tables to represent both
data and relationships among those data

• Terminology (basic notions of the relational
model)

– relation/table

– tuple/row

– attributes/column

4

Example of a Relation
attributes

(or columns)

tuples

(or rows)

Attribute Types

• The set of allowed values for each attribute is
called the domain of the attribute

• Attribute values are (normally) required to be
atomic; that is, indivisible

• The special value null is a member of every
domain. Indicated that the value is “unknown”

• The null value causes complications in the
definition of many operations

Outline

7

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

Relation Schema and Instance

• Database Schema

– Logical design of the database

– Like type definition in programming-language

• Database Instance

– Snapshot of the data

– Like variable in programming-language

Relation Schema and Instance

• Attributes： A1, A2, …, An

• Relation schema: R = (A1, A2, …, An)

Example:

instructor = (ID, name, dept_name, salary)

• Formally, given sets D1, D2, …. Dn a relation r is

– a subset of D1 x D2 x … x Dn

– a set of n-tuples (a1, a2, …, an) where each ai Di

– the current values (relation instance) of a relation are

specified by a table

– an element t of r is a tuple, represented by a row in a table

Relations are Unordered

• Order of tuples is irrelevant

– tuples may be stored in an arbitrary order

– example: instructor relation with unordered tuples

Outline

11

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

Keys

• How to distinguish the tuples in a given
relation?

– the value of the attribute values of a tuple should
be able to uniquely identify the tuple

• Terminology

– Superkey

– Candidate Key

– Primary Key

– Foreign Key

Keys
• Let K R
• K is a superkey of R if values for K are sufficient to identify a

unique tuple of each possible relation r(R)

– Example: {ID} and {ID,name} are both superkeys of instructor.

• Superkey K is a candidate key if K is minimal

– Example: {ID} is a candidate key for Instructor

• One of the candidate keys is selected to be the primary key.

– which one?

• Foreign key constraint: Value in one relation must appear in
another
– Referencing relation
– Referenced relation
– Example – dept_name in instructor is a foreign key from instructor

referencing department

Primary Key Constraint

Referential Integrity Constraint

选修 (学号, 课程号, 成绩)

外键

假设存在关系𝑟和𝑠：𝑟(A, B, C), 𝑠(B, D)，则在关系𝑟上的属性B
称作参照𝑠的外码，𝑟也称为外码依赖的参照关系，𝑠叫做外码
被参照关系
 例 学生(学号,姓名,性别,专业号,年龄) - 参照关系

专业(专业号,专业名称) - 被参照关系 (目标关系)

其中属性专业号称为关系学生的外码

 Instructor (ID, name, dept_name, salary) - 参照关系

Department (dept_name, building, budget) - 被参照关系

参照关系中外码的值必须在被参照关系中实际存在或为null
14

Foreign Key

选修 (学号, 课程号, 成绩)
课程 (课程号,课程名, 学分, 先修课号)

Outline

15

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

Schema Diagram for University Database

 classroom (building, room_number, capacity)

 department (dept_name, building, budget)

 course (course_id, title, dept_name, credits)

 instructor (ID, name, dept_name, salary)

 section (course_id, sec_id, semester, year, building, room_number,
time_slot_id)

 teaches (ID, course_id, sec_id, semester, year)

 student (ID, name, dept_name, tot_cred)

 takes (ID, course_id, sec_id, semester, year, grade)

 advisor (s_ID, i_ID)

 time_slot (time_slot_id, day, start_time, end_time)

 prereq (course_id, prereq_id)

Schema Diagram for University Database

被参照关系 参照关系

Outline

18

• Structure of Relational Databases

• Database Schema

• Keys

• Schema Diagrams

• Relational Query Languages

19

Relational Query Language

• Query Languages
– allow manipulation (操纵) and retrieval (检索) of

data from a database

• Relational Query Languages
– query languages for Relational Database
– “real”/ “practical” query languages

• e.g. SQL

– “pure”/ “mathematical” query languages
• Relational Algebra
• Relational Calculus

20

? ?

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra: More operational (过程化),
very useful for representing execution plans.

Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative (陈述).)

Understanding Relational Algebra & Calculus is key to
understanding SQL, query processing!

22

Declarative vs Procedural

• Procedural programming requires that the
programmer tell the computer what to do.
– how to get the output for the range of required

inputs

– the programmer must know an appropriate
algorithm.

• Declarative programming requires a more
descriptive style.
– the programmer must know what relationships

hold between various entities.

Why do we need Query Languages anyway?

• Two key advantages
– Less work for user asking query

– More opportunities for optimization

• Relational Algebra
– Theoretical foundation for SQL

– Higher level than programming language

• but still must specify steps to get desired result

• Relational Calculus
– Formal foundation for Query-by-Example

– A first-order logic description of desired result

– Only specify desired result, not how to get it

Relational Query Languages

• Procedural vs .non-procedural, or declarative
• “Pure” languages:

– Relational algebra
– Tuple relational calculus
– Domain relational calculus

• The above 3 pure languages are equivalent in
computing power

• We will concentrate in this chapter on
relational algebra
– Not turning-machine equivalent
– consists of 6 basic operations

Thank you!

Q&A

