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Relational Model

Use a collection of tables to represent both
data and relationships among those data

Terminology (basic notions of the relational

model)

— relation/table

— tuple/row

— attributes/column



Example of a Relation

attributes
‘ (or columns)

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000 tuples
15151 | Mozart | Music 40000 (or rows)
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000

98345 | Kim Elec. Eng. 80000




Attribute Types

The set of allowed values for each attribute is
called the domain of the attribute

Attribute values are (normally) required to be
atomic; that is, indivisible

The special value null is a member of every
domain. Indicated that the value is “unknown”

The null value causes complications in the
definition of many operations
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Relation Schema and Instance

* Database Schema

— Logical design of the database

— Like type definition in programming-language
* Database Instance

— Snapshot of the data
— Like variable in programming-language



Relation Schema and Instance

Attributes: A, A,, ..., A,
Relation schema: R = (A, A,, ..., A,)
Example:

instructor = (ID, name, dept_name, salary)

Formally, given sets D, D,, .... D, a relation ris

— asubsetof D, x D, x..xD,

— a set of n-tuples (a,, a,, ..., a,) where each a; € D,

— the current values (relation instance) of a relation are
specified by a table

— an element t of ris a tuple, represented by a row in a table



Relations are Unordered

* Order of tuples is irrelevant
— tuples may be stored in an arbitrary order
— example: instructor relation with unordered tuples

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 30000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000




* Keys
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Keys

* How to distinguish the tuples in a given
relation?

— the value of the attribute values of a tuple should
be able to uniquely identify the tuple

* Terminology
— Superkey
— Candidate Key
— Primary Key
— Foreign Key



Keys

xE (25, BES, k5R)

Let K R

K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R)

— Example: {ID} and {ID,name} are both superkeys of instructor.

Superkey K is a candidate key if K is minimal

— Example: {ID}is a candidate key for Instructor

One of the candidate keys is selected to be the primary key.
— which one? Primary Key Constraint

Foreign key constraint: Value in one relation must appear in
another

— Referencing relation
— Referenced relation

— Example — dept_name in instructor is a foreign key from instructor
referencing department

Referential Integrity Constraint



Foreignh Key
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Schema Diagram for University Database

0 classroom (building, room_number, capacity)

O department (dept_name, building, budget)

0 course (course _id, title, dept_name, credits)

O instructor (1D, name, dept_name, salary)

[ section (course_id, sec_id, semester, year, building, room_number,
time_slot_id)

0 teaches (1D, course_id, sec_id, semester, year)

O student (ID, name, dept_name, tot_cred)
[ takes (ID, course id, sec_id, semester, year, grade)
O advisor (s_ID, i_ID)

O time_slot (time_slot_id, day, start_time, end_time)

O prereqg (course _id, prereq_id)




Schema Diagram for University Database
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Relational Query Language

* Query Languages

— allow manipulation (¥22\) and retrieval (f&3R) of
data from a database

e Relational Query Languages

— qguery languages for Relational Database
— “real”/ “practical” query languages
* e.g. SQL

— “pure”/ “mathematical” query languages
» Relational Algebra
* Relational Calculus
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Query Languages Are specialized languages
(e.g. SQL) for asking questions.

Relational Algebra and Calculus

Algebra Calculus
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Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

Y Relational Algebra: More operational (3F&1{t),
very useful for representing execution plans.

" Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative ([&iA&).)

Understanding Relational Algebra & Calculus is key to
understanding SQL, query processing!



Declarative vs Procedural

* Procedural programming requires that the
programmer tell the computer what to do.

— how to get the output for the range of required
Inputs

— the programmer must know an appropriate
algorithm.
* Declarative programming requires a more
descriptive style.

— the programmer must know what relationships
hold between various entities.



Why do we need Query Languages anyway?

 Two key advantages
— Less work for user asking query
— More opportunities for optimization

e Relational Algebra
— Theoretical foundation for SQL
— Higher level than programming language
* but still must specify steps to get desired result
e Relational Calculus
— Formal foundation for Query-by-Example

— A first-order logic description of desired result
— Only specify desired result, not how to get it



Relational Query Languages

* Procedural vs .non-procedural, or declarative
* “Pure” languages:

— Relational algebra

— Tuple relational calculus

— Domain relational calculus

* The above 3 pure languages are equivalent in
computing power

* We will concentrate in this chapter on
relational algebra

— Not turning-machine equivalent
— consists of 6 basic operations



Thank youl!
Q&A



